Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.868
Filter
Add more filters

Publication year range
1.
ACS Nano ; 18(18): 11988-12009, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38652114

ABSTRACT

Periodontitis, a chronic oral disease instigated by bacteria, severely compromises human oral health. The prevailing clinical treatment for periodontitis involves mechanical scraping in conjunction with antibiotics. Phototherapy is employed to rapidly remove the bacteria and achieve periodontitis treatment, effectively circumventing the adverse effects associated with traditional therapies. Constructing 2D/2D van der Waals (VDW) heterojunctions is a key strategy for obtaining excellent photocatalytic activity. Herein, a 2D/2D violet phosphorus (VP)/Ti3C2 VDW heterojunction is designed using an interfacial engineering strategy. By constructing an electron transport "bridge" (P-Ti bond) at the heterogeneous interface as an effective transfer channel for photogenerated carriers, a compact monolithic structure between the VP and Ti3C2 phases is formed, and the spatial barrier for electron transfer at the interface is eliminated. Meanwhile, the strong directional built-in electric field induced by the intensive electron-coupling effect at the heterogeneous interface served as an internal driving force, which greatly accelerates the exciton dissociation and charge transfer in the photocatalytic process. These excited photogenerated electrons and holes are trapped by O2 and H2O on the surfaces of Ti3C2 and VP, respectively, and are subsequently catalytically converted to antibacterial reactive oxygen species (ROS). The VP/Ti3C2 VDW heterojunction eradicated 97.5% and 98.48% of Staphylococcus aureus and Escherichia coli, respectively, by photocatalytic and photothermal effects under visible light for 10 min. The VP/Ti3C2 nanoperiodontal dressing ointment effectively attenuated inflammatory response, reduced alveolar bone resorption, and promoted periodontal soft and hard tissue repair. Its periodontitis therapeutic effect outperforms the clinically used Periocline.


Subject(s)
Periodontitis , Phosphorus , Titanium , Periodontitis/microbiology , Periodontitis/therapy , Phosphorus/chemistry , Titanium/chemistry , Phototherapy , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Humans , Staphylococcus aureus/drug effects , Escherichia coli , Electricity , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/chemistry , Surface Properties , Animals , Electron Transport , Microbial Sensitivity Tests
2.
Molecules ; 29(7)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38611727

ABSTRACT

The syntheses of Ag-based nanoparticles (NPs) with the assistance of plant extracts have been shown to be environmentally benign and cost-effective alternatives to conventional chemical syntheses. This study discusses the application of Paliurus spina-christi, Juglans regia, Humulus lupulus, and Sambucus nigra leaf extracts for in situ synthesis of Ag-based NPs on cotton fabric modified with citric acid. The presence of NPs with an average size ranging from 57 to 99 nm on the fiber surface was confirmed by FESEM. XPS analysis indicated that metallic (Ag0) and/or ionic silver (Ag2O and AgO) appeared on the surface of the modified cotton. The chemical composition, size, shape, and amounts of synthesized NPs were strongly dependent on the applied plant extract. All fabricated nanocomposites exhibited excellent antifungal activity against yeast Candida albicans. Antibacterial activity was significantly stronger against Gram-positive bacteria Staphylococcus aureus than Gram-negative bacteria Escherichia coli. In addition, 99% of silver was retained on the samples after 24 h of contact with physiological saline solution, implying a high stability of nanoparticles. Cytotoxic activity towards HaCaT and MRC5 cells was only observed for the sample synthetized in the presence of H. lupulus extract. Excellent antimicrobial activity and non-cytotoxicity make the developed composites efficient candidates for medicinal applications.


Subject(s)
Anti-Infective Agents , Nanoparticles , Silver/pharmacology , Gossypium , Textiles , Anti-Infective Agents/pharmacology , Escherichia coli , Plant Extracts/pharmacology
3.
Molecules ; 29(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38611744

ABSTRACT

The green synthesis of zinc oxide nanoparticles (ZnO NPs) using plants has grown in significance in recent years. ZnO NPs were synthesized in this work via a chemical precipitation method with Jasminum sambac (JS) leaf extract serving as a capping agent. These NPs were characterized using UV-vis spectroscopy, FT-IR, XRD, SEM, TEM, TGA, and DTA. The results from UV-vis and FT-IR confirmed the band gap energies (3.37 eV and 3.50 eV) and the presence of the following functional groups: CN, OH, C=O, and NH. A spherical structure and an average grain size of 26 nm were confirmed via XRD. The size and surface morphology of the ZnO NPs were confirmed through the use of SEM analysis. According to the TEM images, the ZnO NPs had an average mean size of 26 nm and were spherical in shape. The TGA curve indicated that the weight loss starts at 100 °C, rising to 900 °C, as a result of the evaporation of water molecules. An exothermic peak was seen during the DTA analysis at 480 °C. Effective antibacterial activity was found at 7.32 ± 0.44 mm in Gram-positive bacteria (S. aureus) and at 15.54 ± 0.031 mm in Gram-negative (E. coli) bacteria against the ZnO NPs. Antispasmodic activity: the 0.3 mL/mL sample solution demonstrated significant reductions in stimulant effects induced by histamine (at a concentration of 1 µg/mL) by (78.19%), acetylcholine (at a concentration of 1 µM) by (67.57%), and nicotine (at a concentration of 2 µg/mL) by (84.35%). The antipyretic activity was identified using the specific Shodhan vidhi method, and their anti-inflammatory properties were effectively evaluated with a denaturation test. A 0.3 mL/mL sample solution demonstrated significant reductions in stimulant effects induced by histamine (at a concentration of 1 µg/mL) by 78.19%, acetylcholine (at a concentration of 1 µM) by 67.57%, and nicotine (at a concentration of 2 µg/mL) by 84.35%. These results underscore the sample solution's potential as an effective therapeutic agent, showcasing its notable antispasmodic activity. Among the administered doses, the 150 mg/kg sample dose exhibited the most potent antipyretic effects. The anti-inflammatory activity of the synthesized NPs showed a remarkable inhibition percentage of (97.14 ± 0.005) at higher concentrations (250 µg/mL). Furthermore, a cytotoxic effect was noted when the biologically synthesized ZnO NPs were introduced to treated cells.


Subject(s)
Antipyretics , Jasminum , Nanoparticles , Zinc Oxide , Zinc Oxide/pharmacology , Parasympatholytics , Acetylcholine , Escherichia coli , Histamine , Nicotine , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus , Anti-Inflammatory Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Plant Extracts/pharmacology
4.
Int J Mol Sci ; 25(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38612814

ABSTRACT

Ag nanoparticles (AgNPs) were biosynthesized using sage (Salvia officinalis L.) extract. The obtained nanoparticles were supported on SBA-15 mesoporous silica (S), before and after immobilization of 10% TiO2 (Degussa-P25, STp; commercial rutile, STr; and silica synthesized from Ti butoxide, STb). The formation of AgNPs was confirmed by X-ray diffraction. The plasmon resonance effect, evidenced by UV-Vis spectra, was preserved after immobilization only for the sample supported on STb. The immobilization and dispersion properties of AgNPs on supports were evidenced by TEM microscopy, energy-dispersive X-rays, dynamic light scattering, photoluminescence and FT-IR spectroscopy. The antioxidant activity of the supported samples significantly exceeded that of the sage extract or AgNPs. Antimicrobial tests were carried out, in conditions of darkness and white light, on Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Candida albicans. Higher antimicrobial activity was evident for SAg and STbAg samples. White light increased antibacterial activity in the case of Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa). In the first case, antibacterial activity increased for both supported and unsupported AgNPs, while in the second one, the activity increased only for SAg and STbAg samples. The proposed antibacterial mechanism shows the effect of AgNPs and Ag+ ions on bacteria in dark and light conditions.


Subject(s)
Blood Group Antigens , Metal Nanoparticles , Antioxidants/pharmacology , Escherichia coli , Spectroscopy, Fourier Transform Infrared , Silver/pharmacology , Antigens, Fungal , Anti-Bacterial Agents/pharmacology , O Antigens , Silicon Dioxide , Plant Extracts/pharmacology
5.
Trop Anim Health Prod ; 56(3): 119, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602560

ABSTRACT

This study was carried out to examine the effects of ginger liquid extract (GLE) on the growth, immune response, antioxidative defence mechanism, and general health of Holstein calves. Sixteen calves (4-d old) were included in the experiment and randomly assigned to groups, and they were fed whole milk containing GLE at a rate of 0, 0.50, 0.72, and 1% of the milk amount consumed. Calves consuming 1% GLE were weaned at an earlier age and gained better body weight (BW) compared to the other groups. The group fed with 0.50% GLE consumed less daily starter than the other groups. The administration of GLE resulted in a non-significant decrease in fecal score (FS), the number of days with diarrhea (DDN), and illness (IDN) among the calves. Notably, the 1% GLE exhibited a significant inhibitory effect on the growth of E. coli, while its effect on the growth of other pathogenic bacteria was not statistically significant. Despite the non-significant reduction in malondialdehyde (MDA), total oxidative status (TOS), and oxidative stress index (OSI) values, the 1% GLE demonstrated support for antioxidative defence mechanism and immune response. The results indicated that 1% GLE can be effective in promoting the health of calves by enhancing their immune response and antioxidant capacity. This suggests that incorporating 1% GLE into their overall well-being, potentially leading to improved health outcomes and performance in calf rearing operations.


Subject(s)
Antioxidants , Zingiber officinale , Animals , Cattle , Escherichia coli , Immunity , Health Status , Plant Extracts/pharmacology
6.
Curr Microbiol ; 81(5): 135, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592462

ABSTRACT

Urinary tract infections are one of the most common infections worldwide. Given the increasing antibiotic resistance, monitoring antibiotic sensitivity patterns is crucial. Furthermore, silver nanoparticles synthesized from Stachys schtschegleevii can exhibit potent antibacterial, antibiotic, and antifungal properties. The plant S. schtschegleevii was collected from its natural habitat, dried, and its extract was then exposed to silver nitrate. Under specific conditions, silver nanoparticles were synthesized from it. Subsequently, the production and validation of silver nanoparticles were confirmed through techniques such as FTIR analysis, UV-Vis analysis, TEM, SEM, EDX analysis, and zeta potential analysis. In the in vitro section of the research, the impact of the extracted silver nanoparticles on bacteria isolated from patients' urine and standard bacterial culture (control) was assessed using the disc diffusion and MIC test methods. The results of the analyses are FTIR (high protein content; proteins and phenols serve as stabilizing agents), UV-Vis (peak of 460 nm), TEM (spherical to occasionally elliptical shapes), SEM (sizes: 26 to 72 nm), EDX (peak at 3 keV), and zeta potential (- 15.76 ± 0.05 mV). The effect of silver nanoparticles by disc diffusion method (mm) is Enterococcus faecalis = 18.31 ± 0.35, Escherichia coli = 21.51 ± 0.61, and Staphylococcus aureus = 19.02 ± 1.28, and by MIC test (µg/ml), E. faecalis = 19, E. coli = 18, and Staphylococcus aureus = 16. Antibacterial activity of the silver nanoparticles synthesized from S. schtschegleevii means that these herbal nanoparticles treat urinary tract infections caused by some of the test isolates.


Subject(s)
Metal Nanoparticles , Stachys , Humans , Escherichia coli , Silver/pharmacology , Anti-Bacterial Agents/pharmacology , Bacteria , Plant Extracts/pharmacology
7.
Nanoscale ; 16(16): 7892-7907, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38568096

ABSTRACT

Magnetic hyperthermia-based cancer therapy (MHCT) holds great promise as a non-invasive approach utilizing heat generated by an alternating magnetic field for effective cancer treatment. For an efficacious therapeutic response, it is crucial to deliver therapeutic agents selectively at the depth of tumors. In this study, we present a new strategy using the naturally occurring tumor-colonizing bacteria Escherichia coli (E. coli) as a carrier to deliver magnetic nanoparticles to hypoxic tumor cores for effective MHCT. Self-propelling delivery agents, "nano-bacteriomagnets" (BacMags), were developed by incorporating anisotropic magnetic nanocubes into E. coli which demonstrated significantly improved hyperthermic performance, leading to an impressive 85% cell death in pancreatic cancer. The in vivo anti-cancer response was validated in a syngeneic xenograft model with a 50% tumor inhibition rate within 20 days and a complete tumor regression within 30 days. This proof-of-concept study demonstrates the potential of utilizing anaerobic bacteria for the delivery of magnetic nanocarriers as a smart therapeutic approach for enhanced MHCT.


Subject(s)
Escherichia coli , Hyperthermia, Induced , Magnetite Nanoparticles , Pancreatic Neoplasms , Animals , Mice , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/therapeutic use , Humans , Cell Line, Tumor , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/pathology , Xenograft Model Antitumor Assays
8.
Sci Rep ; 14(1): 8488, 2024 04 11.
Article in English | MEDLINE | ID: mdl-38605145

ABSTRACT

In the last few decades, researchers have thoroughly studied the use of plants in Palestine, one of them is Cyclamen persicum Mill. (C. persicum). Cyclamen persicum has been historically cultivated since the 1700s due to its tuber. The tuber is known to stimulate the nasal receptors, thus triggering the sensory neurons. Cyclamen persicum has anti-inflammatory effects, reduces cholesterol levels, treats diabetes, and inhibits tumor growth. In this respect, in-vitro examination of antibacterial and anticancer activities and antioxidative potency of C. persicum ethanolic extract were evaluated. The antioxidative potency of the extracted plant material was determined spectrophotometrically using the DPPH free radical scavenging method and the HPLC-PDA method to evaluate its total phenolic content (TPC) and total flavonoid content (TFC). The experimental results revealed weak antibacterial activity of C. persicum extract against both gram negative (E. coli) and gram positive (Streptococcus aureus and S. aureus) bacterial strains, with the zones of inhibition found to be less than 8 mm. On the other hand, powerful activity against MCF7 breast cancer as well as HT29 colon cancer cell lines was obtained. The findings also revealed potent inhibition of free radicals and the presence of maximal levels of natural products such as phenolic compounds and flavonoids, which supportits biological activities and powerful ability to scavenge free radicals. HPLC results showed the presence of numerous flavonoid and phenolic compounds such as rutin, chlorogenic acid, kaempferol, trans-cinnamic acid, quercetin, sinapic acid, and p-coumaric acid.


Subject(s)
Breast Neoplasms , Cyclamen , Humans , Female , Antioxidants/pharmacology , Antioxidants/chemistry , Cyclamen/chemistry , Staphylococcus aureus , Escherichia coli , Plant Extracts/pharmacology , Plant Extracts/chemistry , Flavonoids/pharmacology , Phenols/pharmacology , Anti-Bacterial Agents/pharmacology , Free Radicals
9.
J Phys Chem B ; 128(15): 3563-3574, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38573978

ABSTRACT

Cas1 and Cas2 are highly conserved proteins among the clustered regularly interspaced short palindromic repeat Cas (CRISPR-Cas) systems and play a crucial role in protospacer selection and integration. According to the double-forked CRISPR Cas1-Cas2 complex, we conducted extensive all-atom molecular dynamics simulations to investigate the protospacer DNA binding and recognition. Our findings revealed that single-point amino acid mutations in Cas1 or in Cas2 had little impact on the binding of the protospacer, both in the binding and precatalytic states. In contrast, multiple-point amino acid mutations, particularly G74A, P80L, and V89A mutations on Cas2 and Cas2' proteins (m-multiple1 system), significantly affected the protospacer binding and selection. Notably, mutations on Cas2 and Cas2' led to an increased number of hydrogen bonds (#HBs) between Cas2&Cas2' and the dsDNA in the m-multiple1 system compared with the wild-type system. And the strong electrostatic interactions between Cas1-Cas2 and the protospacer DNA (psDNA) in the m-multiple1 system again suggested the increase in the binding affinity of protospacer acquisition. Specifically, mutations in Cas2 and Cas2' can remotely make the protospacer adjacent motif complementary (PAMc) sequences better in recognition by the two active sites, while multiple mutations K211E, P202Q, P212L, R138L, V134A, A286T, P282H, and P294H on Cas1a/Cas1b&Cas1a'/Cas1b' (m-multiple2 system) decrease the #HBs and the electrostatic interactions and make the PAMc worse in recognition compared with the wild-type system.


Subject(s)
CRISPR-Associated Proteins , Escherichia coli , Escherichia coli/genetics , Molecular Dynamics Simulation , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , DNA/chemistry , Amino Acids/metabolism
10.
Mymensingh Med J ; 33(2): 350-355, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38557509

ABSTRACT

Evaluation of the in vitro antibacterial activity of Methanolic extracts isolated from Black pepper seeds (Piper nigrum L.) against two infection causing pathogens, Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. Between July 2022 and June 2023, this experimental study was conducted at the Mymensingh Medical College's Department of Pharmacology and Therapeutics in conjunction with the Department of Microbiology. Using the disc diffusion and broth dilution methods, the antibacterial activity of methanolic extract of black pepper seeds (MBPE) was evaluated at various doses. The solvents Methanol and 10.0% Di Methyl Sulfoxide (DMSO) were used to make the extract. Using the broth dilution procedure, the conventional antibiotic Ciprofloxacin was utilized and the outcome was contrasted with that of Methanol extracts. Methanolic extract of black pepper seeds (MBPE) at seven distinct concentrations (100, 80, 60, 40, 20, 10 and 5 mg/ml) were utilized, then later in chosen concentrations as needed to confirm the extracts' more precise margin of antimicrobial sensitivity. At 80 mg/ml and above doses of the MBPE, it had an inhibitory impact against the aforementioned microorganisms. For Staphylococcus aureus and Escherichia coli the MIC were 60 and 75 mg/ml in MBPE respectively. As of the MIC of Ciprofloxacin was 1µg/ml against Staphylococcus aureus and Escherichia coli. In comparison to MICs of MBPE for the test organisms, the MIC of Ciprofloxacin was the lowest. This study clearly shows that Staphylococcus aureus and Escherichia coli are sensitive to the methanolic extract of black pepper seeds' antibacterial properties.


Subject(s)
Piper nigrum , Staphylococcus aureus , Humans , Methanol , Plant Extracts/pharmacology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Ciprofloxacin , Seeds , Escherichia coli
11.
Microbiologyopen ; 13(2): e1408, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38560776

ABSTRACT

Arginine-ornithine metabolism plays a crucial role in bacterial homeostasis, as evidenced by numerous studies. However, the utilization of arginine and the downstream products of its metabolism remain undefined in various gut bacteria. To bridge this knowledge gap, we employed genomic screening to pinpoint relevant metabolic targets. We also devised a targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics method to measure the levels of arginine, its upstream precursors, and downstream products in cell-free conditioned media from enteric pathobionts, including Escherichia coli, Klebsiella aerogenes, K. pneumoniae, Pseudomonas fluorescens, Acinetobacter baumannii, Streptococcus agalactiae, Staphylococcus epidermidis, S. aureus, and Enterococcus faecalis. Our findings revealed that all selected bacterial strains consumed glutamine, glutamate, and arginine, and produced citrulline, ornithine, and GABA in our chemically defined medium. Additionally, E. coli, K. pneumoniae, K. aerogenes, and P. fluorescens were found to convert arginine to agmatine and produce putrescine. Interestingly, arginine supplementation promoted biofilm formation in K. pneumoniae, while ornithine supplementation enhanced biofilm formation in S. epidermidis. These findings offer a comprehensive insight into arginine-ornithine metabolism in enteric pathobionts.


Subject(s)
Ornithine , Putrescine , Ornithine/metabolism , Putrescine/metabolism , Arginine , Escherichia coli/genetics , Escherichia coli/metabolism , Chromatography, Liquid , Staphylococcus aureus/metabolism , Tandem Mass Spectrometry , Bacteria/metabolism , Klebsiella pneumoniae/metabolism
12.
Curr Pharm Biotechnol ; 25(4): 499-509, 2024.
Article in English | MEDLINE | ID: mdl-38572608

ABSTRACT

Background: Salpingitis obstructive infertility (SOI) refers to infertility caused by abnormal conditions such as tubal adhesion and blockage caused by acute and chronic salpingitis. SOI has a serious impact on women's physical and mental health and family harmony, and it is a clinical problem that needs to be solved urgently.

Objective: The purpose of the present study was to explore the potential pharmacological mechanisms of the Yinjia tablets (Yin Jia Pian, YJP) on tubal inflammation.

Methods: Networks of YJP-associated targets and tubal inflammation-related genes were constructed through the STRING database. Potential targets and pathway enrichment analysis related to the therapeutic efficacy of YJP were identified using Cytoscape and Database for Annotation, Visualization, and Integrated Discovery (metascape). E. coli was used to establish a rat model of tubal inflammation and to validate the predictions of network pharmacology and the therapeutic efficacy of YJP. H&E staining was used to observe the pathological changes in fallopian tubes. TEM observation of the ultrastructure of the fallopian tubes. ELISA was used to detect the changes of IL-6 and TNF-α in fallopian tubes. Immunohistochemistry was used to detect the expression of ESR1. The changes of Bcl-2, ERK1/2, p-ERK1/2, MEK, p-MEK, EGFR, and p-EGFR were detected by western blot.

Results: Through database analysis, it was found that YJP shared 105 identical targets with the disease. Network pharmacology analysis showed that IL-6, TNF, and EGFR belong to the top 5 core proteins associated with salpingitis, and EGFR/MEK/ERK may be the main pathway involved. The E. coli-induced disease rat model of fallopian tube tissue showed damage, mitochondrial disruption, and increased levels of the inflammatory factors IL-6 and TNF-α. Tubal inflammatory infertility rats have increased expression of Bcl-2, p-ERK1/2, p-MEK, and p-EGFR, and decreased expression of ESR1. In vivo, experiments showed that YJP improved damage of tissue, inhibited shedding of tubal cilia, and suppressed the inflammatory response of the body. Furthermore, YJP inhibited EGFR/MEK/ERK signaling, inhibited the apoptotic protein Bcl-2, and upregulated ESR1.

Conclusion: This study revealed that YJP Reducing tubal inflammation and promoting tissue repair may be associated with inhibition of the EGFR/MEK/ERK signaling pathway.

.


Subject(s)
Drugs, Chinese Herbal , Infertility , Salpingitis , Humans , Female , Rats , Animals , Salpingitis/complications , Salpingitis/metabolism , Salpingitis/pathology , MAP Kinase Signaling System , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Escherichia coli/metabolism , Network Pharmacology , Infertility/complications , Signal Transduction , Inflammation/drug therapy , ErbB Receptors/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism
13.
BMC Complement Med Ther ; 24(1): 138, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566054

ABSTRACT

Herbal components are highly useful assets for the advancement of novel antibacterial drugs. Nanotechnology holds great promise as an approach to enhance the effectiveness and develop the composition of these substances. The study developed nanogels incorporating camphor, thymol, and a combination derived from the initial nanoemulsions with particle sizes of 103, 85, and 135 nm, respectively. The viscosity of nanogels and the successful loading of compounds in them were examined by viscometery and ATR-FTIR studies. The bactericidal properties of the nanogels were examined against four bacterial strains. The nanogel containing camphor and thymol at 1250 µg/mL concentration exhibited complete growth suppression against Pseudomonas aeruginosa and Staphylococcus aureus. The thymol nanogel at 1250 µg/mL and the camphor nanogel at 2500 µg/mL exhibited complete inhibition of growth on Listeria monocytogenes and Escherichia coli, respectively. Both nanogels showed favorable effectiveness as antibacterial agents and could potentially examine a wide range of pathogens and in vivo studies.


Subject(s)
Camphor , Polyethylene Glycols , Polyethyleneimine , Thymol , Thymol/pharmacology , Nanogels , Camphor/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli
14.
Sci Rep ; 14(1): 8079, 2024 04 06.
Article in English | MEDLINE | ID: mdl-38582926

ABSTRACT

With the growing resistance of pathogenic microbes to traditional drugs, biogenic silver nanoparticles (SNPs) have recently drawn attention as potent antimicrobial agents. In the present study, SNPs synthesized with the aid of orange (Citrus sinensis) peel were engineered by screening variables affecting their properties via Plackett-Burman design. Among the variables screened (temperature, pH, shaking speed, incubation time, peel extract concentration, AgNO3 concentration and extract/AgNO3 volume ratio), pH was the only variable with significant effect on SNPs synthesis. Therefore, SNPs properties could be enhanced to possess highly regular shape with zeta size of 11.44 nm and zeta potential of - 23.7 mV. SNPs purified, capped and stabilized by cloud point extraction technique were then checked for their antimicrobial activity against Bacillus cereus, Listeria innocua, Listeria monocytogenes, Staphylococcus aureus, Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhimurium and Candida albicans. The maximum antimicrobial activity of SNPs was recorded against E. coli, L. monocytogenes and C. albicans with clear zone diameter of 33.2, 31.8 and 31.7 mm, respectively. Based on minimum inhibition concentration and minimum bactericidal concentration of SNPs (300 mg/l) as well as their effect on respiratory chain dehydrogenases, cellular sugar leakage, protein leakage and lipid peroxidation of microbial cells, E. coli was the most affected. Scanning electron microscopy, protein banding and DNA fragmentation proved obvious ultrastructural and molecular alterations of E. coli treated with SNPs. Thus, biogenic SNPs with enhanced properties can be synthesized with the aid of Citrus peel; and such engineered nanoparticles can be used as potent antimicrobial drug against E. coli.


Subject(s)
Anti-Infective Agents , Citrus sinensis , Citrus , Metal Nanoparticles , Silver/pharmacology , Silver/chemistry , Metal Nanoparticles/chemistry , Citrus/chemistry , Escherichia coli/metabolism , Anti-Infective Agents/chemistry , Microbial Sensitivity Tests , Citrus sinensis/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology
15.
ScientificWorldJournal ; 2024: 5080176, 2024.
Article in English | MEDLINE | ID: mdl-38515931

ABSTRACT

The importance of medicinal plants for the treatment of different diseases is high from the aspects of the pharmaceutical industry and traditional healers. The present study involves nine different medicinal plants, namely, Neolamarckia cadamba, Nyctanthes arbor-tristis, Pogostemon benghalensis, Equisetum debile, Litsea monopetala, Spilanthes uliginosa, Desmostachya bipinnata, Mallotus philippensis, and Phoenix humilis, collected from Chitwan district of Nepal for biochemical analysis followed by the isolation of active plant fractions from the bioactive plant extract. The methanolic extracts of roots, barks, seeds, seed cover, and the other aerial parts of plants were used for the phytochemical analysis and biological activities. The DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging assay was adopted to evaluate the antioxidant activity. Antibacterial activity was evaluated using the agar well diffusion method. The antidiabetic activity was studied by the α-amylase enzyme inhibition assay. The highest antioxidant activity was observed in extracts of Nyctanthes arbor-tristis followed by Mallotus philippensis (seed cover), Pogostemon benghalensis, Litsea monopetala, Phoenix humilis, and Neolamarckia cadamba with IC50 values of 27.38 ± 1.35, 32.08 ± 2.81, 32.75 ± 2.13, 33.82 ± 1.07, 40.14 ± 0.93, and 50.44 ± 3.75 µg/mL, respectively. The highest antidiabetic activity was observed in extracts of Phoenix humilis followed by Desmostachya bipinnata and Pogostemon benghalensis with IC50 values of 95.69 ± 6.97, 99.24 ± 12.6, and 106.3 ± 12.89 µg/mL, respectively. The mild α-amylase enzyme inhibition was found in extracts of Nyctanthes arbor-tristis, Spilanthes uliginosa Swartz, Litsea monopetala, and Equisetum debile showing IC50 values of 110.4 ± 7.78, 115.98 ± 10.24, 149.83 ± 8.3, and 196.45 ± 6.04 µg/mL, whereas Mallotus Philippensis (seed cover), Mallotus philippensis (seed), and Desmostachya bipinnata showed weak α-amylase inhibition with IC50 values of 208.87 ± 1.76, 215.41 ± 2.09, and 238.89 ± 9.27 µg/mL, respectively. The extract of Nyctanthes arbor-tristis showed high zones of inhibition against S. aureus (ATCC 25923) and E. coli (ATCC 25922) of ZOI 26 and 22 mm, respectively. The chemical constituents isolated from the active plant Nyctanthes arbor-tristis were subjected to GCMS analysis where the major chemical compounds were 11,14,17-eicosatrienoic acid and methyl ester. These results support the partial scientific validation for the traditional uses of these medicinal plants in the treatment of diabetes and infectious diseases by the people living in different communities of Chitwan, Nepal.


Subject(s)
Oleaceae , Plants, Medicinal , Humans , Nepal , Antioxidants/pharmacology , Antioxidants/chemistry , Escherichia coli , Staphylococcus aureus , Plant Extracts/chemistry , Oleaceae/chemistry , Hypoglycemic Agents , alpha-Amylases
16.
Fitoterapia ; 174: 105871, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428618

ABSTRACT

The essential oils of Thymus vulgaris (TVEO) and Thymus serpyllum (TSEO) show different biological activities. The aim of the study was to evaluate the biological activities of TVEO and TSEO from Montenegro. The main components of TVEO were p-cymene (29.52%), thymol (22.8%) and linalool (4.73%) while the main components of TSEO were p-cymene (19.04%), geraniol (11,09%), linalool (9.16%), geranyl acetate (6.49%) and borneol (5.24%). Antioxidant activity determined via DPPH for TVEO was 4.49 and FRAP 1130.27, while for TSEO it was estimated that DPPH was 4.88 µL/mL and FRAP was 701.25 µmol FRAP/L. Both essential oils were active against all tested bacteria, with the highest level of sensitivity of E. coli with MIC of 1.5625 µL/mL. Essential oils showed strong cytotoxic effects on human cancer cell lines, with IC50 values ranging from 0.20 to 0.24 µL/mL for TVEO and from 0.32 to 0.49 µL/mL for TSEO. TVEO caused apoptosis in cervical adenocarcinoma HeLa cells through activation of caspase-3 and caspase-8, while TSEO caused apoptosis through caspase-3. EOs decreased levels of oxidative stress in normal MRC-5 cells. HeLa cells treated with TVEO had reduced MMP2 expression levels, while cells treated with TSEO had lowered MMP2 and MMP9 levels. The treatment of HeLa cells with TVEO increased the levels of miR-16 and miR-34a, indicating potential tumor-suppressive properties. Our findings suggest that Thymus essential oils may be considered as good candidates for further investigation as cancer-chemopreventive and cancer-therapeutic agents.


Subject(s)
Acyclic Monoterpenes , Cymenes , MicroRNAs , Oils, Volatile , Thymus Plant , Humans , Oils, Volatile/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Caspase 3 , Matrix Metalloproteinase 2/pharmacology , Escherichia coli , Thymus Plant/chemistry , HeLa Cells , Montenegro , Molecular Structure , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry
17.
Planta ; 259(5): 102, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38549005

ABSTRACT

MAIN CONCLUSION: Hydroxy(phenyl)pyruvic acid reductase from Actaea racemosa catalyzes dual reactions in reducing 4-hydroxyphenylpyruvic acid as well as ß-hydroxypyruvic acid. It thus qualifies to be part of fukinolic and cimicifugic acid biosynthesis and also photorespiration. The accumulation of fukinolic acid and cimicifugic acids is mainly restricted to Actaea racemosa (Ranunculaceae) and other species of the genus Actaea/Cimicifuga. Cimicifugic and fukinolic acids are composed of a hydroxycinnamic acid part esterified with a benzyltartaric acid moiety. The biosynthesis of the latter is unclear. We isolated cDNA encoding a hydroxy(phenyl)pyruvic acid reductase (GenBank OR393286) from suspension-cultured material of A. racemosa (ArH(P)PR) and expressed it in E. coli for protein production. The heterologously synthesized enzyme had a mass of 36.51 kDa and catalyzed the NAD(P)H-dependent reduction of 4-hydroxyphenylpyruvic acid to 4-hydroxyphenyllactic acid or ß-hydroxypyruvic acid to glyceric acid, respectively. The optimal temperature was at 38 °C and the pH optimum at pH 7.5. NADPH is the preferred cosubstrate (Km 23 ± 4 µM). Several substrates are accepted by ArH(P)PR with ß-hydroxypyruvic acid (Km 0.26 ± 0.12 mM) followed by 4-hydroxyphenylpyruvic acid (Km 1.13 ± 0.12 mM) as the best ones. Thus, ArH(P)PR has properties of ß-hydroxypyruvic acid reductase (involved in photorespiration) as well as hydroxyphenylpyruvic acid reductase (possibly involved in benzyltartaric acid formation).


Subject(s)
Caffeic Acids , Cimicifuga , Phenylacetates , Phenylpyruvic Acids , Pyruvates , Cimicifuga/chemistry , Pyruvic Acid , Oxidoreductases , Escherichia coli/genetics , Plant Extracts
18.
J Food Prot ; 87(5): 100265, 2024 May.
Article in English | MEDLINE | ID: mdl-38492643

ABSTRACT

Limited data exist on the environmental factors that impact pathogen prevalence in the soil. The prevalence of foodborne pathogens, Salmonella and Listeria monocytogenes, and the prevalence and concentration of generic E. coli in Florida's agricultural soils were evaluated to understand the potential risk of microbial contamination at the preharvest level. For all organisms but L. monocytogenes, a longitudinal field study was performed in three geographically distributed agricultural areas across Florida. At each location, 20 unique 5 by 5 m field sampling sites were selected, and soil was collected and evaluated for Salmonella presence (25 g) and E. coli and coliform concentrations (5 g). Complementary data collected from October 2021 to April 2022 included: weather; adjacent land use; soil properties, including macro- and micro-nutrients; and field management practices. The overall Salmonella and generic E. coli prevalence was 0.418% (1/239) and 11.3% (27/239), respectively; with mean E. coli concentrations in positive samples of 1.56 log CFU/g. Farm A had the highest prevalence of generic E. coli, 22.8% (18/79); followed by Farm B, 10% (8/80); and Farm C 1.25% (1/80). A significant relationship (p < 0.05) was observed between generic E. coli and coliforms, and farm and sampling trip. Variation in the prevalence of generic E. coli and changes in coliform concentrations between farms suggest environmental factors (e.g. soil properties) at the three farms were different. While Salmonella was only detected once, generic E. coli was detected in Florida soils throughout the duration of the growing season meaning activities that limit contact between soil and horticultural crops should continue to be emphasized. Samples collected during an independent sampling trip were evaluated for L. monocytogenes, which was not detected. The influence of local environmental factors on the prevalence of indicator organisms in the soil presents a unique challenge when evaluating the applicability of more global models to predict pathogen prevalence in preharvest produce environments.


Subject(s)
Agriculture , Escherichia coli , Salmonella , Soil Microbiology , Soil , Salmonella/isolation & purification , Florida , Escherichia coli/isolation & purification , Prevalence , Colony Count, Microbial , Humans , Enterobacteriaceae/isolation & purification
19.
Sci Rep ; 14(1): 7243, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38538702

ABSTRACT

This research explores the eco-friendly synthesis of silver nanoparticles (AgNPs) using Cassia occidentalis L. seed extract. Various analytical techniques, including UV-visible spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDX), were employed for comprehensive characterization. The UV-visible spectra revealed a distinct peak at 425 nm, while the seed extract exhibited peaks at 220 and 248 nm, indicating the presence of polyphenols and phytochemicals. High-resolution TEM unveiled spherical and oval-shaped AgNPs with diameters ranging from 6.44 to 28.50 nm. The SEM exhibiting a spherical shape and a polydisperse nature, thus providing insights into the morphology of the AgNPs. EDX analysis confirmed the presence of silver atoms at 10.01% in the sample. XRD results unequivocally confirm the crystalline nature of the AgNPs suspension, thereby providing valuable insights into their structural characteristics and purity. The antioxidant properties of AgNPs, C. occidentalis seed extract, and butylated hydroxytoluene (BHT) were assessed, revealing IC50 values of 345, 500, and 434 µg/mL, respectively. Antibacterial evaluation against Bacillus subtilis, Staphylococcus aureus, and Escherichia coli demonstrated heightened sensitivity of bacteria to AgNPs compared to AgNO3. Standard antibiotics, tetracycline, and ciprofloxacin, acting as positive controls, exhibited substantial antibacterial efficacy. The green-synthesized AgNPs displayed potent antibacterial activity, suggesting their potential as a viable alternative to conventional antibiotics for combating pathogenic bacterial infections. Furthermore, potential biomedical applications of AgNPs were thoroughly discussed.


Subject(s)
Metal Nanoparticles , Senna Plant , Silver/pharmacology , Silver/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Metal Nanoparticles/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents/chemistry , Spectrometry, X-Ray Emission , Seeds , X-Ray Diffraction , Escherichia coli , Bacillus subtilis , Spectroscopy, Fourier Transform Infrared
20.
Food Chem ; 448: 139143, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38554584

ABSTRACT

Sustainable carboxymethyl cellulose (CMC)-based active composite films were developed through the addition of polyphenol-rich extract from coffee husk (CHE) and carbon dots (CDs) prepared using the biowaste residue of CHE extraction. The influences of various CDs contents on the physicochemical and functional characteristics of composite films have been researched. The 6% (w/w) CHE and 3% (w/w) CDs were uniformly dispersed within the CMC matrix to produce a homogenous film with enhanced mechanical properties. The CMC/CHE/CDs3% film exhibited outstanding UV-light blocking, improved water and gas barriers, potent antioxidant activity with above 95% DPPH and ABTS scavenging rates, and effective antibacterial capabilities against L. monocytogenes and E. coli. The food packaging experiment demonstrated that this active composite film slowed the rotting of fresh-cut apples and extended their shelf-life to 7 days at 4 °C storage. Therefore, the obtained multifunctional film showed promise as an environmentally friendly food packaging material.


Subject(s)
Carbon , Carboxymethylcellulose Sodium , Food Packaging , Plant Extracts , Polyphenols , Waste Products , Food Packaging/instrumentation , Polyphenols/chemistry , Carboxymethylcellulose Sodium/chemistry , Plant Extracts/chemistry , Carbon/chemistry , Waste Products/analysis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Listeria monocytogenes/drug effects , Antioxidants/chemistry , Coffee/chemistry , Coffea/chemistry , Quantum Dots/chemistry , Malus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL